
Python for
Everyone

Cay Horstmann
Rance Necaise

 2/e

Executed while
condition is true

Condition

A container (list, str, range, dict, set)

Loop Statements

while balance < TARGET :
 year = year + 1
 balance = balance * (1 + rate / 100)

for value in values :
 sum = sum + value

Selected Operators and Their Precedence
(See Appendix A for the complete list.)

[] Sequence element access
** Raising to a power
* / // % Multiplication, division, �oor

division, remainder
+ - Addition, subtraction
< <= > >= != in Comparisons and membership
not

or Boolean operators
and

Variable and Constant De�nitions

cansPerPack = 6

CAN_VOLUME = 0.335

Name Initial value

Exits method and
returns result

Function name Parameter name

Function De�nition

def cubeVolume(sideLength) :
volume = sideLength ** 3

 return volume

Mathematical Functions

abs(x) Absolute value |x|
round(x) Rounds to nearest integer
max(x1, x2, ...) Largest of the arguments
min(x1, x2, ...) Smallest of the arguments

From math module:
sqrt(x) Square root x
trunc(x) Truncates to an integer
sin(x), cos(x), tan(x) Sine, cosine, tangent of x
degrees(x), radians(x) Converts to degrees or radians
log(x), log(x, base) Natural log, logbase(x)

Conditional Statement

if floor >= 13 :
 actualFloor = floor - 1
elif floor >= 0 :
 actualFloor = floor
else :
 print("Floor negative")

Condition
Executed when condition is true

Second condition (optional)

Executed when
all conditions are
false (optional)

Use uppercase for constants

Tables

table = [[16, 3, 2, 13],
 [5, 10, 11, 8],
 [9, 6, 7, 12],
 [4, 15, 14, 1]]

for row in range(len(table)) :
 for column in range(len(table[row])) :
 sum = sum + table[row][column]

Number of rows
Number of columns

Imports

from math import sqrt, log

 Module Imported items

Strings

s = "Hello"

len(s)

s[1]

s + "!"

s * 2

s.upper()

s.replace("e", "3")

The length of the string: 5
The character with index 1: "e"
Concatenation: Hello!
Replication: "HelloHello"
Yields "HELLO"
Yields "H3llo"

Lists

friends = []
values = [16, 3, 2, 13]

for i in range(len(values)) :
 values[i] = i * i

friends.append("Bob")
friends.insert(0, "Amy")
if "Amy" in friends :
 n = friends.index("Amy")
 friends.pop(n)
else :
 friends.pop()
friends.remove("Bob")

guests = friends + ["Lee", "Zoe"]
scores = [0] * 12
bestFriends = friends[0 : 3]

total = sum(values)
largest = max(values)
values.sort()

 An empty list

 Removes nth
 Removes last

 Concatenation
 Replication
 Slice

 List must contain numbers

Use min to get the smallest

Included Excluded

pyt2_cover2.pdf 1 9/28/15 9:56 AM

Python for
Everyone

Cay Horstmann
San Jose State University

Rance Necaise
Randolph-Macon College

 2/e

VICE PRESIDENT AND EXECUTIVE PUBLISHER Laurie Rosatone
DIRECTOR Don Fowley
EXECUTIVE EDITOR Bryan Gambrel
EDITORIAL PROGRAM ASSISTANT Jessy Moor
MARKETING MANAGER Dan Sayre
SENIOR PRODUCT DESIGNER Jenny Welter
ASSOCIATE PRODUCT DESIGNER Wendy Ashenberg
DESIGN DIRECTOR Harry Nolan
SENIOR DESIGNER Madelyn Lesure
SENIOR PHOTO EDITOR Billy Ray
SENIOR CONTENT MANAGER Valerie Zaborski
SENIOR PRODUCTION EDITOR Tim Lindner
PRODUCTION MANAGEMENT SERVICES Cindy Johnson
COVER DESIGN Madelyn Lesure / Wendy Lai
COVER PHOTOS (castle) © Anik Messier/Getty Images;

(cow) © Eric Isselée/Shutterstock;
(parrot) © Eric Isselée/iStockphoto;
(trumpets) © modella/123RF.com.

This book was set in 10.5/12 Stempel Garamond LT Std by Publishing Services, and printed and bound by Quad
Graphics/Versailles. The cover was printed by Quad Graphics/Versailles.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on
a foundation of principles that include responsibility to the communities we serve and where we live and work.
In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, eco-
nomic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper
specifications and procurement, ethical conduct within our business and among our vendors, and community and
charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani-
cal, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the
Web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201)
748-6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

ISBN 978-1-119-05655-3

ISBN-BRV 978-1-119-05636-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

PREFACE

iii

This book is an introduction to computer programming using Python that focuses on
the essentials—and on effective learning. Designed to serve a wide range of student
interests and abilities, it is suitable for a first course in programming for computer
scientists, engineers, and students in other disciplines. No prior programming expe-
rience is required, and only a modest amount of high school algebra is needed. For
pedagogical reasons, the book uses Python 3, which is more regular than Python 2.

Here are the book’s key features:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, functions, proce-
dural decomposition, and the built-in data structures. Objects are used when appro-
priate in the early chapters. Students start designing and implementing their own
classes in Chapter 9.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Numerous Worked Examples demonstrate how to apply chap-
ter concepts to interesting problems.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate
solutions to programming problems. Introduced where they are most relevant, these
strategies address barriers to success for many students. Strategies included are:

• Algorithm Design (with pseudocode)
• First Do It By Hand (doing sample

calculations by hand)
• Flowcharts
• Test Cases
• Hand-Tracing
• Storyboards
• Solve a Simpler Problem First
• Reusable Functions

• Stepwise Refnement
• Adapting Algorithms
• Discovering Algorithms by

Manipulating Physical Objects
• Tracing Objects
• Patterns for Object Data
• Thinking Recursively
• Estimating the Running Time of

an Algorithm

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. And additional practice oppor-
tunities, including automatically-graded programming exercises and skill-oriented
multiple-choice questions, are available online.

iv Preface

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.

New to This Edition
Extended Graphics and Image Processing
The use of graphics to reinforce language constructs has been extended to include the
use of image processing. Students are introduced to image processing in Chapter 4 as
they learn to design and use loops and again in Chapter 5 where they build a toolkit of
image processing functions.

Toolbox Sections
Many optional “Toolbox” sections introduce useful packages in the wonderful eco-
system of Python libraries. Students are empowered to perform useful work such
as statistical computations, drawing graphs and charts, sending e-mail, processing
spreadsheets, and analyzing web pages. The libraries are placed in the context of
computer science principles, and students learn how those principles apply to solving
real-world problems. Each Toolbox is accompanied by many new end-of-chapter
review and programming exercises.

Data Plotting
Several new Worked Examples show students how to create a visual representation
of data through graphical plots. These examples use the pyplot library to create simple
data plots as they show students how to apply the language constructs introduced in
the respective chapters.

Interactive Learning
Additional interactive content is available that integrates with this text and immerses
students in activities designed to foster in-depth learning. Students don’t just watch
animations and code traces, they work on generating them. The activities provide
instant feedback to show students what they did right and where they need to study
more. To find out more about how to make this content available in your course, visit
http://wiley.com/go/pfe2interactivities.

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

©
 T

er
ra

xp
lo

re
r/

iS
to

ck
ph

ot
o.

Preface v

“CodeCheck” is an innovative online service that students can use to work on pro-
gramming problems. You can assign exercises that have already been prepared, and
you can easily add your own. Visit http://codecheck.it to learn more and to try it out.

A Tour of the Book
Figure 1 shows the dependencies between the chapters and how topics are organized.
The core material of the book is:

Chapter 1. Introduction
Chapter 2. Programming with

Numbers and Strings
Chapter 3. Decisions
Chapter 4. Loops

Chapter 5. Functions
Chapter 6. Lists
Chapter 7. Files and Exceptions
Chapter 8. Sets and Dictionaries

Two chapters cover object-oriented programming:

Chapter 9. Objects and Classes
Chapter 10. Inheritance

Two chapters support a course that goes more deeply into algorithm design and
analysis:

Chapter 11. Recursion
Chapter 12. Sorting and Searching

Figure 1
Chapter Dependencies

10. Inheritance

11. Recursion

12. Sorting
and Searching

9. Objects
and Classes

Fundamentals

Object-Oriented Programming

Data Structures & Algorithms

1. Introduction

2. Programming
with Numbers

and Strings

3. Decisions

4. Loops

5. Functions

7. Files and
Exceptions

A gentle
introduction to recursion

is optional.

Sections 7.1 and 7.2
(text �le processing) can be

covered with Chapter 4. 6. Iteration6. Lists

6. Iteration
8. Sets and
Dictionaries

Sections 6.1 – 6.3
(lists) can be covered

 with Chapter 4.

vi Preface

Appendices Six appendices provide a handy reference for students on operator
precedence, reserved words, Unicode, the Python standard library, and more.

Graphics and Image Processing
Writing programs that create drawings or process images can provide students with
effective visualizations of complex topics. Chapter 2 introduces the EzGraphics
open-source library and how to use it to create basic graphical drawings. The library,
which students find easier to use than Python’s standard Tkinter library, also sup-
ports simple image processing. Graphics Worked Examples and exercises are pro-
vided throughout the text, all of which are optional.

Exercises
End-of-chapter exercises contain a broad mix of review and programming questions,
with optional questions from graphics, science, and business. Designed to engage
students, the exercises illustrate the value of programming in applied fields.

Custom Book and eBook Options
Python For Everyone may be ordered in both custom print and eBook formats. You
can order a custom print version that includes your choice of chapters—including
those from other Horstmann titles. Visit customselect.wiley.com to create your custom
order.

Python For Everyone is also available in an electronic eBook format with three key
advantages:

• The price is signifcantly lower than for the printed book.
• The eBook contains all material in the printed book plus the web appendices in

one easy-to-browse format.
• You can customize the eBook to include your choice of chapters.

The interactive edition of Python For Everyone adds even more value by integrating
a wealth of interactive exercises into the eBook. See http://wiley.com/go/pfe2interac-
tivities to find out more about this new format.

Please contact your Wiley sales rep for more information about any of these
options or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

• Source code for all examples programs and Worked Examples in the book.
• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This

extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

• “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback.
Instructors can assign exercises that have already been prepared, or easily add
their own.

Preface vii

Acknowledgments
Many thanks to Byran Gambrel, Don Fowley, Jessy Moor, Jennifer Lartz, Graig
Donini, and Billy Ray at John Wiley & Sons, and Vickie Piercey at Publishing Ser-
vices for their help with this project. An especially deep acknowledgment and thanks
goes to Cindy Johnson for her hard work, sound judgment, and amazing attention to
detail.

We are grateful to the following for their excellent work preparing and reviewing
the supplemental materials:

Jim Carrier, Guilford Technical Community College
Akshaye Dhawan, Ursinus College
Byron Hoy, Stockton University
Maria Laurent-Rice, Orange Coast College
John McManus, Randolph-Macon College
Ben Stephenson, University of Calgary
Amanda Stouder, Rose-Hulman Institute of Technology
Dean Zeller, University of Northern Colorado

Many thanks to the individuals who provided feedback, reviewed the manuscript,
made valuable suggestions, and brought errors and omissions to our attention. They
include:

Claude Anderson, Rose Hulman Institute of Technology
Gokcen Cilingir, Washington State University
Lee D. Cornell, Minnesota State University, Mankato
Dirk Grunwald, University of Colorado Boulder
Andrew Harrington, Loyola University Chicago
Debbie Keen, University of Kentucky
Nicholas A. Kraft, University of Alabama
Aaron Langille, Laurentian University
Shyamal Mitra, University of Texas Austin
Chandan R. Rupakheti, Rose-Hulman Institute of Technology
John Schneider, Washington State University
Amit Singhal, University of Rochester
Ben Stephenson, University of Calgary
Amanda Stouder, Rose-Hulman Institute of Technology
Dave Sullivan, Boston University
Jay Summet, Georgia Institute of Technology
James Tam, University of Calgary
Krishnaprasad Thirunarayan, Wright State University
Leon Tietz, Minnesota State University, Mankato
Peter Tucker, Whitworth University
Frances VanScoy, West Virginia University

viii Walkthrough

A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional fea-
tures, such as chapter objectives and a wealth of exercises, each chapter contains ele-
ments geared to today’s visual learner.

1.5 Analyzing Your First Program 11

1.5 Analyzing Your First Program
 eht si niaga ereH .liated ni margorp nohtyP tsrfi eht ezylana lliw ew ,noitces siht nI

code:

ch01/hello.py

1 # My �rst Python program.
2 print("Hello, World!")

A Python program contains one or more lines of instructions or statements that will
be translated and executed by the Python interpreter. The first line

My first Python program.

is a comment. Comments begin with # and are not statements. They provide descrip-
tive information to the programmer. Comments will be discussed in more detail in
Section 2.1.5.

The second line contains a statement
print("Hello, World!")

that prints or displays a line of text, namely “Hello, World!”. In this statement, we
call a function named print and pass it the information to be displayed. A function is
a collection of programming instructions that carry out a particular task. We do not
have to implement this function, it is part of the Python language. We simply want
the function to perform its intended task, namely to print a value.

To use, or call, a function in Python, you need to specify

1. The name of the function you want to use (in this case, print).
2. Any values the function needs to carry out its task (in this case, "Hello, World!").

The technical term for such a value is an argument. Arguments are enclosed in
parentheses with multiple arguments separated by commas. The number of
arguments required depends on the function.

A comment provides
information to
the programmer.

A function is
a collection of
instructions
that perform a
particular task.

A function is called
by specifying the
function name and
its arguments.

Syntax 1.1 print Statement

print("The answer is", 6 + 7, "!")

All arguments are optional. If no arguments
are given, a blank line is printed.

The v alues to be printed,
one after the other ,
separated by a blank space.

print()
print(value1, value2, ..., valuen)

Syntax

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

Walkthrough ix

6.6 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 311

Now how does that help us with our problem, switching the first and the second
half of the list?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Python programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel ef�ciency1 , the price and fuel efficiency (in mpg) of the first car
• purchase price2 and fuel ef�ciency2 , the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Python, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code: a sequence of precise steps formulated in English.

Problem Statement You have the choice of buying two
cars. One is more fuel efficient than the other, but also more
expensive. You know the price and fuel efficiency (in miles per
gallon, mpg) of both cars. You plan to keep the car for ten years.
Assume a price of $4 per gallon of gas and usage of 15,000 miles
per year. You will pay cash for the car and not worry about
financing costs. Which car is the better deal?

Step 1 Determine the inputs and outputs.

The inputs are the floor dimensions (length × width),
measured in inches. The output is a tiled floor.

Step 2 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can
solve that task, then you can solve the problem by lay ing
one row next to the other, starting from a wall, until you
reach the opposite wall.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

Problem Statement Make a plan for tiling a rectangular bathroom floor with alternating
black and white tiles measuring 4 × 4 inches. The floor dimensions, measured in inches, are
multiples of 4.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Table 1 Number Literals in Python

Number Type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 float A number with a fractional part has type float.

1.0 float An integer with a fractional part .0 has type float.

1E6 float A number in exponential notation: 1 × 106 or 1000000.
Numbers in exponential notation always have type float.

2.96E-2 float Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 Error: Do not use a comma as a decimal separator.

3 1/2 Error: Do not use fractions; use decimal notation: 3.5.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples apply
the steps in the How To to a
di�erent example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Memorable photos reinforce
analogies and help students
remember the concepts.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

Optional graphics programming
examples demonstrate constructs
with engaging drawings, visually
reinforcing programming concepts.

x Walkthrough

g

Figure 3
Parameter P

1 Function call result1 =

sideLength =

2 Initializing function parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After function call result1 = 8

result1 = cubeVolume(2)

volume = sideLength ** 3
return volume

result1 = cubeVolume(2)

result1 = cubeVolume(2)

Consider the function call illustrated in Figure 3:
result1 = cubeVolume(2)

• The parameter variable sideLength of the cubeVolume function is created when the
function is called. 1

• The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. 2

• The function computes the expression sideLength ** 3, which has the value 8. That
value is stored in the variable volume. 3

• The function returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the function calling the cubeVolume function. The caller
puts the return value in the result1 variable. 4

ch04/doubleinv.py

1 ##
2 # This program computes the time required to double an investment.
3 #
4
5 # Create constant variables.
6 RATE = 5.0
7 INITIAL_BALANCE = 10000.0
8 TARGET = 2 * INITIAL_BALANCE
9

10 # Initialize variables used with the loop.
11 balance = INITIAL_BALANCE
12 year = 0
13
14 # Count the years required for the investment to double.
15 while balance < TARGET :
16 year = year + 1
17 interest = balance * RATE / 100
18 balance = balance + interest
19
20 # Print the results.
21 print("The investment doubled after", year, "years.")

25. Write the for loop of the investment.py program as a while loop.
26. How many numbers does this loop print?

for n in range(10, -1, -1) :
 print(n)

27. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
28. Write a for loop that computes the total of the integers from 1 to n.
29. How would you modify the loop of the investment.py program to print all bal-

ances until the investment has doubled?

Practice It Now you can try these exercises at the end of the chapter: R4.18, R4.19, P4.8.

S E L F C H E C K
Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

•• Business P4.28 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

•• Business P4.29 Write a program that first asks the user
to type in today’s price of one dollar
in Jap anese yen, then reads U.S. dollar

l d h

•• Graphics P2.30 Write a program that displays the Olympic rings. Color the rings in the Olympic
colors.

 Make a bar chart to plot the following data set. Label each bar.

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

• Science P4.37 Radioactive decay of radioactive materials can be
modeled by the equation A = A0e-t (log 2 /h), where A is
the amount of the material at time t, A0 is the amount
at time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A /A0 in a patient
body every hour for 24 hours after receiving a dose.

Program listings are carefully
designed for easy reading, going
well beyond simple color coding.
Methods and functions are set
o� by a subtle outline.

Optional science, graphics, and
business exercises engage
students with realistic applications.

Figure 2
Execution of the
doubleinv.py Loop

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

print(year)

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Check the loop condition1
The condition is true

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Execute the statements in the loop2

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Check the loop condition again3
The condition is still true

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

After 15 iterations4
The condition is

no longer true

Execute the statement following the loop5

.

.

.

year = 0

balance = 10000.0

year = 1

interest = 500.0

interest = 500.0

interest = 989.97

interest = 989.97

balance = 10500.0

year = 1

balance = 10500.0

year = 15

balance = 20789.28

year = 15

balance = 20789.28

Progressive �gures trace code
segments to help students visualize
the program �ow. Color is used
consistently to make variables and
other elements easily recognizable.

Walkthrough xi

TOOLBOX 7.1 Working with CSV Files

You have seen how to read and write text �les and to process data stored in various formats,
but what if you need to process data stored in a spreadsheet? For example, suppose you need
to print a list of all the movies released in the 1990s from a spreadsheet �lled with movie data,
such as the one shown below.

Most spreadsheet applications store their data in proprietary �le formats that cannot be
accessed directly by other programs. Fortunately, most can save a copy of the data in a porta

 (Comma-Separated Values). A CSV �le is simply a text �le in which
each row of the spreadsheet is stored as a line of text. The data values in each row are separated
by commas. For example, the CSV �le created from the spreadsheet shown above contains:

ble format known as CSV
-

Exact Comparison of Floating-Point Numbers

Floating-point numbers have only a limited precision, and cal-
culations can introduce round off errors. You must take these
inevitable roundoffs into account when comparing floating-
point numbers. For example, the following code multiplies the
square root of 2 by itself. Ide ally, we expect to get the answer 2:

from math import sqrt

r = sqrt(2.0)
if r * r == 2.0 :
 print("sqrt(2.0) squared is 2.0")
else :
 print("sqrt(2.0) squared is not 2.0 but", r * r)

This program displays

sqrt(2.0) squared is not 2.0 but 2.0000000000000004

It does not make sense in most circumstances to compare float ing-point numbers exactly.
Instead, we should test whether they are close enough. That is, the magnitude of their differ-
ence should be less than some threshold. Mathematically, we would write that x and y are close
enough if

Common Error 3.2

Take limited precision into
account when comparing
floating-point numbers.

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Hand-Tracing

A very useful technique for understanding whether a pro gram
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with
pseudocode or Python code.

Get an index card, a cocktail napkin, or whatever sheet of paper
is within reach. Make a column for each variable. Have the pro-
gram code ready. Use a marker, such as a paper clip, to mark the
current statement. In your mind, execute statements one at a time.
Every time the value of a variable changes, cross out the old value
and write the new value below the old one.

Let’s trace the taxes.py program on page 107 with the inputs from
the program run that follows it. In lines 12 and 13, income and
maritalStatus are initialized by input statements.

5 # Initialize constant variables for the tax rates and rate limits.
6 RATE1 = 0.10
7 RATE2 = 0.25
8 RATE1_SINGLE_LIMIT = 32000.0
9 RATE1_MARRIED_LIMIT = 64000.0

10
11 # Read income and marital status.
12 income = float(input("Please enter your income: "))
13 maritalStatus = input("Please enter s for single, m for married: ")

In lines 16 and 17, tax1 and tax2 are
initialized to 0.0.

tax1 = 0.0
tax2 = 0.0

Programming Tip 3.2

Hand-tracing helps you
understand whether a
program works correctly.

 marital
 tax1 tax2 income status

 80000 m

 marital
 tax1 tax2 income status

 0 0 80000 m

 When computers were first
invented in the 1940s, a
computer filled an entire

room. The photo below shows the
ENIAC (electronic numerical integra-
tor and computer), completed in 1946
at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that
you are reading right now could

not have been written without
computers.

Computing & Society 1.1 Computers Are Everywhere

Short-Circuit Evaluation of Boolean Operators

The and and or operators are computed using short-circuit evalu-
ation. In other words, logical expressions are evaluated from left to
right, and evaluation stops as soon as the truth value is determined.
When an and is evaluated and the first condition is false, the second
condition is not evaluated, because it does not matter what the out-
come of the second test is.

For example, consider the expression

quantity > 0 and price / quantity < 10

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not
attempted. That is just as well, because it is illegal to divide by zero.

Similarly, when the first condition of an or expres-
sion is true, then the remainder is not evaluated because
the result must be true.

In a short circuit, electricity travels along the path of
least resistance. Similarly, short-circuit evaluation

takes the fastest path for computing the result
of a Boolean expression.

Special Topic 3.4

The and and or
operators are
computed using
short-circuit
evaluation: As soon
as the truth value
is determined, no
further conditions
are evaluated.

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Computing & Society presents social
and historical information on computing—
for interest and to ful�ll the “historical
and social context” requirements of the
ACM/IEEE curriculum guidelines.

Special Topics present optional
topics and provide additional
explanation of others.

Toolbox sections teach students
how to use Python libraries for
solving real-world problems.

CONTENTS

xii

PREFACE iii

SPECIAL FEATURES xviii

INTRODUCTION 1

1.1 Computer Programs 2

1.2 The Anatomy of a Computer 3
CS 1 Computers Are Everywhere 5

1.3 The Python Programming Language 5

1.4 Becoming Familiar with Your Programming
Environment 6
PT 1 Interactive Mode 9

PT 2 Backup Copies 9

ST 1 The Python Interpreter 10

1.5 Analyzing Your First Program 11

1.6 Errors 13
CE 1 Misspelling Words 15

1.7 PROBLEM SOLVING: Algorithm Design 15
HT 1 Describing an Algorithm with

Pseudocode 19

WE 1 Writing an Algorithm for Tiling a Floor 20

PROGRAMMING WITH
NUMBERS AND STRINGS 27

2.1 Variables 28

Defining Variables 28
Number Types 30
Variable Names 31
Constants 32
Comments 33

CE 1 Using Undefined Variables 34

PT 1 Choose Descriptive Variable Names 34

PT 2 Do Not Use Magic Numbers 35

2.2 Arithmetic 35

Basic Arithmetic Operations 35
Powers 36
Floor Division and Remainder 37
Calling Functions 38
Mathematical Functions 39

CE 2 Roundoff Errors 41

CE 3 Unbalanced Parentheses 41

PT 3 Use Spaces in Expressions 42

ST 1 Other Ways to Import Modules 42

ST 2 Combining Assignment and Arithmetic 42

ST 3 Line Joining 43

2.3 PROBLEM SOLVING: First Do It By Hand 43
WE 1 Computing Travel Time 45

2.4 Strings 46

The String Type 46
Concatenation and Repetition 47
Converting Between Numbers and Strings 48
Strings and Characters 48
String Methods 50

ST 4 Character Values 51

ST 5 Escape Sequences 52

CS 1 International Alphabets and Unicode 52

2.5 Input and Output 53

User Input 53
Numerical Input 54
Formatted Output 54

PT 4 Don’t Wait to Convert 58

HT 1 Writing Simple Programs 58

WE 2 Computing the Cost of Stamps 61

CS 2 The Pentium Floating-Point Bug 63

2.6 GRAPHICS: Simple Drawings 63

Creating a Window 64
Lines and Polygons 66
Filled Shapes and Color 67
Ovals, Circles, and Text 69

HT 2 GRAPHICS: Drawing Graphical Shapes 70

TOOLBOX 1 Symbolic Processing with SymPy 73

DECISIONS 91

3.1 The if Statement 92
CE 1 Tabs 96

PT 1 Avoid Duplication in Branches 96

ST 1 Conditional Expressions 97

3.2 Relational Operators 97
CE 2 Exact Comparison of Floating-Point

Numbers 101

ST 2 Lexicographic Ordering of Strings 101

1

2

3

Contents xiii

HT 1 Implementing an if Statement 102

WE 1 Extracting the Middle 104

3.3 Nested Branches 106
PT 2 Hand-Tracing 108

CS 1 Denver’s Luggage Handling System 109

3.4 Multiple Alternatives 110
TOOLBOX 1 Sending E-mail 113

3.5 PROBLEM SOLVING: Flowcharts 115

3.6 PROBLEM SOLVING: Test Cases 119
PT 3 Make a Schedule and Make Time for

Unexpected Problems 120

3.7 Boolean Variables and Operators 121
CE 3 Confusing and and or Conditions 124

PT 4 Readability 124

ST 3 Chaining Relational Operators 125

ST 4 Short-Circuit Evaluation of Boolean
Operators 125

ST 5 De Morgan’s Law 126

3.8 Analyzing Strings 126

3.9 APPLICATION: Input Validation 130
ST 6 Terminating a Program 133
ST 7 Interactive Graphical Programs 133

CS 2 Artificial Intelligence 134

WE 2 GRAPHICS: Intersecting Circles 134
TOOLBOX 2 Plotting Simple Graphs 138

LOOPS 165

4.1 The while Loop 166
CE 1 Don’t Think “Are We There Yet?” 170

CE 2 Infinite Loops 171

CE 3 Off-by-One Errors 171

CS 1 The First Bug 172

4.2 PROBLEM SOLVING: Hand-Tracing 173

4.3 APPLICATION: Processing Sentinel
Values 176
ST 1 Processing Sentinel Values with a

Boolean Variable 179

ST 2 Redirection of Input and Output 179

4.4 PROBLEM SOLVING: Storyboards 180

4.5 Common Loop Algorithms 183

Sum and Average Value 183
Counting Matches 184
Prompting Until a Match is Found 184

Maximum and Minimum 184
Comparing Adjacent Values 185

4.6 The for Loop 187
PT 1 Count Iterations 191

HT 1 Writing a Loop 192

4.7 Nested Loops 194
ST 3 Special Form of the print Function 198

WE 1 Average Exam Grades 198

WE 2 A Grade Distribution Histogram 200

4.8 Processing Strings 202

Counting Matches 202
Finding All Matches 203
Finding the First or Last Match 203
Validating a String 204
Building a New String 204

4.9 APPLICATION: Random Numbers and
Simulations 206

Generating Random Numbers 207
Simulating Die Tosses 207
The Monte Carlo Method 208

WE 3 GRAPHICS: Bull’s Eye 210

4.10 GRAPHICS: Digital Image Processing 212

Filtering Images 212
Reconfiguring Images 215

4.11 PROBLEM SOLVING: Solve a Simpler
Problem First 217
CS 2 Digital Piracy 223

FUNCTIONS 245

5.1 Functions as Black Boxes 246

5.2 Implementing and Testing Functions 248

Implementing a Function 248
Testing a Function 249
Programs that Contain Functions 250

PT 1 Function Comments 252

5.3 Parameter Passing 252
PT 2 Do Not Modify Parameter Variables 254

CE 1 Trying to Modify Arguments 254

5.4 Return Values 255
ST 1 Using Single-Line Compound

Statements 256

HT 1 Implementing a Function 257

WE 1 Generating Random Passwords 259

4

5

xiv Contents

5.5 Functions Without Return Values 263

5.6 PROBLEM SOLVING: Reusable
Functions 265
CS 1 Personal Computing 268

5.7 PROBLEM SOLVING: Stepwise
Refnement 269
PT 3 Keep Functions Short 273

PT 4 Tracing Functions 274

PT 5 Stubs 275

WE 2 Calculating a Course Grade 275

WE 3 Using a Debugger 278

5.8 Variable Scope 282
PT 6 Avoid Global Variables 285

WE 4 GRAPHICS: Rolling Dice 285

5.9 GRAPHICS: Building an Image Processing
Toolkit 288

Getting Started 288
Comparing Images 289
Adjusting Image Brightness 290
Rotating an Image 291
Using the Toolkit 292

WE 5 Plotting Growth or Decay 294

5.10 Recursive Functions (Optional) 296
HT 2 Thinking Recursively 299

LISTS 315

6.1 Basic Properties of Lists 316

Creating Lists 316
Accessing List Elements 317
Traversing Lists 318
List References 319

CE 1 Out-of-Range Errors 320

ST 1 Reverse Subscripts 320

PT 1 Use Lists for Sequences of Related
Items 321

CS 1 Computer Viruses 321

6.2 List Operations 322

Appending Elements 322
Inserting an Element 322
Finding an Element 323
Removing an Element 324
Concatenation and Replication 325
Equality Testing 325
Sum, Maximum, Minimum, and Sorting 325

Copying Lists 326

ST 2 Slices 328

6.3 Common List Algorithms 328

Filling 329
Combining List Elements 329
Element Separators 329
Maximum and Minimum 330
Linear Search 330
Collecting and Counting Matches 331
Removing Matches 331
Swapping Elements 332
Reading Input 333

WE 1 Plotting Trigonometric Functions 335

6.4 Using Lists with Functions 338
ST 3 Call by Value and Call by Reference 341

ST 4 Tuples 342

ST 5 Functions with a Variable Number of
Arguments 342

ST 6 Tuple Assignment 343

ST 7 Returning Multiple Values with Tuples 343

TOOLBOX 1 Editing Sound Files 344

6.5 PROBLEM SOLVING: Adapting
Algorithms 345
HT 1 Working with Lists 347

WE 2 Rolling the Dice 349

6.6 PROBLEM SOLVING: Discovering Algorithms by
Manipulating Physical Objects 352

6.7 Tables 356

Creating Tables 357
Accessing Elements 358
Locating Neighboring Elements 358
Computing Row and Column Totals 359
Using Tables with Functions 360

WE 3 A World Population Table 362

ST 8 Tables with Variable Row Lengths 364

WE 4 GRAPHICS: Drawing Regular Polygons 365

FILES AND EXCEPTIONS 383

7.1 Reading and Writing Text Files 384

Opening a File 384
Reading from a File 385
Writing from a File 386
A File Processing Example 386

CE 1 Backslashes in File Names 388

6

7

Contents xv

7.2 Text Input and Output 388

Iterating over the Lines of a File 388
Reading Words 390
Reading Characters 392
Reading Records 393

ST 1 Reading the Entire File 397

ST 2 Regular Expressions 397

ST 3 Character Encodings 398

TOOLBOX 1 Working with CSV Files 399

7.3 Command Line Arguments 401
HT 1 Processing Text Files 404

WE 1 Analyzing Baby Names 407

TOOLBOX 2 Working with Files and
Directories 410

CS 1 Encryption Algorithms 412

7.4 Binary Files and Random Access
(Optional) 413

Reading and Writing Binary Files 413
Random Access 414
Image Files 415
Processing BMP Files 416

WE 2 GRAPHICS: Displaying a Scene File 419

7.5 Exception Handling 422

Raising Exceptions 423
Handling Exceptions 424
The finally Clause 426

PT 1 Raise Early, Handle Late 428

PT 2 Do Not Use except and finally in the
Same try Statement 428

ST 4 The with Statement 428

TOOLBOX 3 Reading Web Pages 429

7.6 APPLICATION: Handling Input Errors 430
TOOLBOX 4 Statistical Analysis 433

WE 3 Creating a Bubble Chart 438

CS 2 The Ariane Rocket Incident 441

SETS AND
DICTIONARIES 457

8.1 Sets 458

Creating and Using Sets 458
Adding and Removing Elements 459
Subsets 460
Set Union, Intersection, and Difference 461

WE 1 Counting Unique Words 465

PT 1 Use Python Sets, Not Lists, for Efficient Set
Operations 466

ST 1 Hashing 467

CS 1 Standardization 468

8.2 Dictionaries 468

Creating Dictionaries 469
Accessing Dictionary Values 470
Adding and Modifying Items 470
Removing Items 471
Traversing a Dictionary 472

ST 2 Iterating over Dictionary Items 475

ST 3 Storing Data Records 475

WE 2 Translating Text Messages 476

8.3 Complex Structures 478

A Dictionary of Sets 478
A Dictionary of Lists 481

ST 4 User Modules 484

WE 3 GRAPHICS: Pie Charts 484

TOOLBOX 1 Harvesting JSON Data from
the Web 489

OBJECTS AND CLASSES 499

9.1 Object-Oriented Programming 500

9.2 Implementing a Simple Class 502

9.3 Specifying the Public Interface of
a Class 506

9.4 Designing the Data Representation 508
PT 1 Make All Instance Variables Private, Most

Methods Public 509

9.5 Constructors 510
CE 1 Trying to Call a Constructor 512

ST 1 Default and Named Arguments 512

9.6 Implementing Methods 513
PT 2 Define Instance Variables Only in the

Constructor 516

ST 2 Class Variables 516

9.7 Testing a Class 517
HT 1 Implementing a Class 519

WE 1 Implementing a Bank Account Class 522

9.8 PROBLEM SOLVING: Tracing Objects 525

9.9 PROBLEM SOLVING: Patterns for
Object Data 528

Keeping a Total 528
Counting Events 529

8

9

xvi Contents

Collecting Values 529
Managing Properties of an Object 530
Modeling Objects with Distinct States 530
Describing the Position of an Object 531

CS 1 Electronic Voting Machines 533

9.10 Object References 534

Shared References 534
The None Reference 536
The self Reference 536
The Lifetime of Objects 537

9.11 APPLICATION: Writing a Fraction
Class 538

Fraction Class Design 538
The Constructor 539
Special Methods 540
Arithmetic Operations 542
Logical Operations 543

ST 3 Object Types and Instances 546

WE 2 GRAPHICS: A Die Class 547

CS 2 Open Source and Free Software 550

INHERITANCE 563

10.1 Inheritance Hierarchies 564
PT 1 Use a Single Class for Variation in Values,

Inheritance for Variation in Behavior 567

ST 1 The Cosmic Superclass: object 568

10.2 Implementing Subclasses 569
CE 1 Confusing Super- and Subclasses 572

10.3 Calling the Superclass Constructor 573

10.4 Overriding Methods 577
CE 2 Forgetting to Use the super Function When

Invoking a Superclass Method 580

10.5 Polymorphism 580
ST 2 Subclasses and Instances 584

ST 3 Dynamic Method Lookup 584

ST 4 Abstract Classes 585

CE 3 Don’t Use Type Tests 586

HT 1 Developing an Inheritance Hierarchy 586

WE 1 Implementing an Employee Hierarchy for
Payroll Processing 591

10.6 APPLICATION: A Geometric Shape Class
Hierarchy 594

The Base Class 595
Basic Shapes 597
Groups of Shapes 600

RECURSION 611

11.1 Triangle Numbers Revisited 612
CE 1 Infinite Recursion 615

ST 1 Recursion with Objects 616

11.2 PROBLEM SOLVING: Thinking
Recursively 616
WE 1 Finding Files 620

11.3 Recursive Helper Functions 621

11.4 The Efciency of Recursion 622

11.5 Permutations 627
CS 1 The Limits of Computation 630

11.6 Backtracking 631
WE 2 Towers of Hanoi 636

11.7 Mutual Recursion 639
TOOLBOX 1 Analyzing Web Pages with

Beautiful Soup 643

SORTING AND
SEARCHING 655

12.1 Selection Sort 656

12.2 Profling the Selection Sort
Algorithm 658

12.3 Analyzing the Performance of the
Selection Sort Algorithm 660
ST 1 Oh, Omega, and Theta 662

ST 2 Insertion Sort 663

12.4 Merge Sort 664

12.5 Analyzing the Merge Sort Algorithm 667
ST 3 The Quicksort Algorithm 669

12.6 Searching 671
Linear Search 671
Binary Search 672

12.7 PROBLEM SOLVING: Estimating the Running
Time of an Algorithm 674

Linear Time 674
Quadratic Time 675
The Triangle Pattern 676
Logarithmic Time 677

PT 1 Searching and Sorting 679

ST 4 Comparing Objects 679

WE 1 Enhancing the Insertion Sort Algorithm 680

CS 1 The First Programmer 683

10

11

12

Contents xvii

APPENDIX A PYTHON OPERATOR SUMMARY A-1

APPENDIX B PYTHON RESERVED WORD
SUMMARY A-3

APPENDIX C THE PYTHON STANDARD
LIBRARY A-5

APPENDIX D THE BASIC LATIN AND LATIN-1 SUBSETS
OF UNICODE*

APPENDIX E BINARY NUMBERS AND BIT OPERATIONS*

APPENDIX F HTML SUMMARY*

GLOSSARY A-20

INDEX A-25

CREDITS A-40

*On the companion site at www.wiley.com/college/horstmann.

ALPHABETICAL LIST OF SYNTAX BOXES
Assignment 29

Calling Functions 38
Constructor 511

for Statement 188
for Statement with range Function 189
Function Defnition 249

Handling Exceptions 425

if Statement 94

Lists 317

Method Defnition 514

Opening and Closing FIles 385

print Statement 12
Program with Functions 250

Raising an Exception 424

Set and Dictionary Literals 469
String Format Operator 55
Subclass Constructor 573
Subclass Defnition 570

The finally Clause 426

while Statement 167

xviii Special Features

© Tom Horyn/iStockphoto.

© Steve Simzer/iStockphoto.

CHAPTER

© Eric Isselée/iStockphoto.
chalice: Paul Fleet/Getty Images, Inc.;
tools: mattjeacock/Getty Images, Inc.

Common
Errors

Toolboxes
 and

 Worked Examples

How Tos
 and

Worked Examples

1 Misspelling Words 15 Describing an Algorithm
with Pseudocode 19

Writing an Algorithm for
Tiling a Floor 20

2 Using Undefined Variables 34

Roundoff Errors 41

Unbalanced Parentheses 41

Symbolic Processing
with SymPy 73

Computing Travel Time 45

Writing Simple Programs 58

Computing the Cost
of Stamps 61

Graphics: Drawing
Graphical Shapes 70

3 Tabs 96

Exact Comparison of
Floating-Point Numbers 101

Confusing and and
or Conditions 124

Sending E-mail 113

Plotting Simple Graphs 138

Implementing an
if Statement 102

Extracting the Middle 104

Graphics: Intersecting
Circles 134

4 Don’t Think “Are We
There Yet?” 170

Infinite Loops 171

Off-by-One Errors 171

A Grade Distribution
Histogram 200

Writing a Loop 192

Average Exam Grades 198

Graphics: Bull’s Eye 210

5 Trying to Modify
Arguments 254

Plotting Growth or Decay 294 Implementing a Function 257

Generating Random
Passwords 259

Calculating a Course Grade 275

Using a Debugger 278

Graphics: Rolling Dice 285

Thinking Recursively 299

Special Features xix

© Mikhail Mishchenko/123RF Limited. © modella/123RF.com.

© Stephen Coburn/123RF.com.

Programming
Tips Special Topics Random Facts

Interactive Mode 9

Backup Copies 9

The Python Interpreter 10 Computers Are Everywhere 5

Choose Descriptive
Variable Names 34

Do Not Use Magic Numbers 35

Use Spaces in Expressions 42

Don’t Wait to Convert 58

Other Ways to Import Modules 42

Combining Assignment and
Arithmetic 42

Line Joining 43

Character Values 51

Escape Sequences 52

International Alphabets and
Unicode 52

The Pentium Floating-
Point Bug 63

Avoid Duplication in Branches 96

Hand-Tracing 108

Make a Schedule and Make Time
for Unexpected Problems 120

Readability 124

Conditional Expressions 97

Lexicographic Ordering
of Strings 101

Chaining Relational
Operators 125

Short-Circuit Evaluation of
Boolean Operators 125

De Morgan’s Law 126

Terminating a Program 133

Interactive Graphical Programs 133

Denver’s Luggage
Handling System 109

Artificial Intelligence 134

Count Iterations 191 Processing Sentinel Values
with a Boolean Variable 179

Redirection of Input and
 Output 179

Special Form of the print
Function 188

The First Bug 172

Digital Piracy 223

Function Comments 252

Do Not Modify Parameter
Variables 254

Keep Functions Short 273

Tracing Functions 274

Stubs 275

Avoid Global Variables 285

Using Single-Line Compound
Statements 256

Personal Computing 257

xx Special Features

© Tom Horyn/iStockphoto.

© Steve Simzer/iStockphoto.

CHAPTER

© Eric Isselée/iStockphoto.
chalice: Paul Fleet/Getty Images, Inc.;
tools: mattjeacock/Getty Images, Inc.

Common
Errors

Toolboxes
 and

 Worked Examples

How Tos
 and

Worked Examples

6 Out-of-Range Errors 320 Plotting Trigonometric
Functions 335

Editing Sound Files 344

Working with Lists 347

Rolling the Dice 349

A World Population
Table 362

Graphics: Drawing Regular
Polygons 365

7 Backslashes in File Names 388 Working with CSV Files 399

Working with Files and
Directories 410

Reading Web Pages 429

Statistical Analysis 433

Creating a Bubble Chart 438

Processing Text Files 404

Analyzing Baby Names 407

Graphics: Displaying a
Scene File 419

8 Harvesting JSON Data
from the Web 489

Counting Unique Words 465

Translating Text
Messages 476

Graphics: Pie Charts 484

9 Trying to Call a Constructor 512 Implementing a Class 519

Implementing a Bank
Account Class 522

Graphics: A Die Class 547

10 Confusing Super- and
Subclasses 572

Forgetting to Use the super
Function When Invoking
a Superclass Method 580

Don’t Use Type Tests 586

Developing an
Inheritance Hierarchy 586

Implementing an
Employee Hierarchy for
Payroll Processing 591

11 Infinite Recursion 615 Analyzing Web Pages with
Beautiful Soup 643

Finding Files 620

Towers of Hanoi 636

12 Enhancing the Insertion
Sort Algorithm 680

Programming
Tips Special Topics Random Facts

Use Lists for Sequences of

Related Items 321

Reverse Subscripts 320

Slices 328

Call by Value and
Call by Reference 341

Tuples 342

Functions with a Variable
Number of Arguments 342

Tuple Assignment 343

Returning Multiple Values
with Tuples 343

Tables with Variable
Row Lengths 364

Computer Viruses 321

Raise Early, Handle Late 428

Do Not Use except and finally
in the Same try Statement 428

Reading the Entire File 397

Regular Expressions 397

Character Encodings 398

The with Statement 428

Encryption Algorithms 412

The Ariane Rocket Incident 441

Use Python Sets, Not Lists, for
Efficient Set Operations 466

Hashing 467

Iterating over
Dictionary Items 475

Storing Data Records 475

User Modules 484

Standardization 468

Make all Instance Variables Private,
Most Methods Public 509

Define Instance Variables
Only in the Constructor 516

Default and Named
Arguments 512

Class Variables 516

Object Types and Instances 546

Electronic Voting Machines 533

Open Source and
Free Software 550

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior 567

The Cosmic Superclass:
object 568

Subclasses and Instances 584

Dynamic Method Lookup 584

Abstract Classes 585

Recursion with Objects 616 The Limits of
Computation 630

Searching and Sorting 679 Oh, Omega, and Theta 662

Insertion Sort 663

The Quicksort Algorithm 669

Comparing Objects 679

The First Programmer 683

Special Features xxi

© Mikhail Mishchenko/123RF Limited. © modella/123RF.com.

© Stephen Coburn/123RF.com.

Programming
Tips Special Topics Random Facts

Use Lists for Sequences of

Related Items 321

Reverse Subscripts 320

Slices 328

Call by Value and
Call by Reference 341

Tuples 342

Functions with a Variable
Number of Arguments 342

Tuple Assignment 343

Returning Multiple Values
with Tuples 343

Tables with Variable
Row Lengths 364

Computer Viruses 321

Raise Early, Handle Late 428

Do Not Use except and finally
in the Same try Statement 428

Reading the Entire File 397

Regular Expressions 397

Character Encodings 398

The with Statement 428

Encryption Algorithms 412

The Ariane Rocket Incident 441

Use Python Sets, Not Lists, for
Efficient Set Operations 466

Hashing 467

Iterating over
Dictionary Items 475

Storing Data Records 475

User Modules 484

Standardization 468

Make all Instance Variables Private,
Most Methods Public 509

Define Instance Variables
Only in the Constructor 516

Default and Named
Arguments 512

Class Variables 516

Object Types and Instances 546

Electronic Voting Machines 533

Open Source and
Free Software 550

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior 567

The Cosmic Superclass:
object 568

Subclasses and Instances 584

Dynamic Method Lookup 584

Abstract Classes 585

Recursion with Objects 616 The Limits of
Computation 630

Searching and Sorting 679 Oh, Omega, and Theta 662

Insertion Sort 663

The Quicksort Algorithm 669

Comparing Objects 679

The First Programmer 683

For Clora, maybe—C.H.

To my parents
Willard and Ella—R.N.

1C H A P T E R

1

INTRODUCTION

To learn about computers
and programming

To write and run your first Python program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

C H A P T E R G O A L S

C H A P T E R C O N T E N T S

1.1 COMPUTER PROGRAMS 2

1.2 THE ANATOMY OF A
COMPUTER 3

Computing & Society 1.1: Computers Are
Everywhere 5

1.3 THE PYTHON PROGRAMMING
LANGUAGE 5

1.4 BECOMING FAMILIAR WITH YOUR
PROGRAMMING ENVIRONMENT 6

Programming Tip 1.1: Interactive Mode 9
Programming Tip 1.2: Backup Copies 9
Special Topic 1.1: The Python Interpreter 10

1.5 ANALYZING YOUR FIRST
PROGRAM 11

Syntax 1.1: print Statement 12

1.6 ERRORS 13

Common Error 1.1: Misspelling Words 15

1.7 PROBLEM SOLVING:
ALGORITHM DESIGN 15

How To 1.1: Describing an Algorithm with
Pseudocode 19

Worked Example 1.1: Writing an Algorithm for
Tiling a Floor 20

© JanPietruszka/iStockphoto.

© JanPietruszka/iStockphoto.

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Python program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1 Computer Programs
You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much nar rower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and periph eral devices are collectively
called the hardware. The programs the computer executes are called the soft ware.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophis ticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in sim ple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers
execute very basic
instructions in rapid
succession.

A computer program
is a sequence of
instructions and
decisions.

Programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

© JanPietruszka/iStockphoto.

1.2 The Anatomy of a Computer 3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1. What is required to play music on a computer?
2. Why is a CD player less flexible than a computer?
3. What does a computer user need to know about programming in order to play a

video game?

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 1).
The inside wiring of the CPU is enormously complicated. The CPUs used for per-
sonal computers at the time of this writing are composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates
and executes the program instructions; it carries out arithmetic operations such as
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage.

There are two kinds of storage. Primary storage is made from memory chips:
electronic circuits that can store data, provided they are supplied with electric power.
Secondary storage, usually a hard disk (see Figure 2), provides slower and less
expensive storage that persists without electricity. A hard disk consists of rotating
platters, which are coated with a mag netic material, and read/write heads, which can
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the
data in memory and writes the modified data back to secondary storage.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

The central
processing unit (CPU)
performs program
control and data
processing.

Storage devices
include memory and
secondary storage.

Figure 1 Central Processing Unit© Amorphis/iStockphoto. Figure 2 A Hard Disk
PhotoDisc, Inc./Getty Images, Inc.

©
 A

m
or

ph
is

/iS
to

ck
ph

ot
o.

P
ho

to
D

is
c,

 I
nc

./G
et

ty
 I

m
ag

es
, I

nc
.

4 Chapter 1 Introduction

Figure 3 Schematic Design of a Personal Computer

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) are stored on
the hard disk, on a compact disk (or DVD), or elsewhere on the network. When a
program is started, it is brought into memory, where the CPU can read it. The CPU
reads the program one instruction at a time. As directed by these instructions, the
CPU reads data, modifies it, and writes it back to memory or the hard disk. Some pro-
gram instruc tions will cause the CPU to place dots on the display screen or printer or
to vibrate the speaker. As these actions happen many times over and at great speed,
the human user will perceive images and sound. Some program instructions read user
input from the keyboard or mouse. The program analyzes the nature of these inputs
and then executes the next appropriate instruction.

4. Where is a program stored when it is not currently running?
5. Which part of the computer carries out arithmetic operations, such as addition

and multiplication?

Practice It Now you can try these exercises at the end of the chapter: R1.2, R1.3.© Nicholas Homrich/iStockphoto.

S E L F C H E C K

1.3 The Python Programming Language 5

Computing & Society 1.1 Computers Are Everywhere

1.3 The Python Programming Language
In order to write a computer program, you need to provide a sequence of instruc-
tions that the CPU can execute. A computer program consists of a large number of
simple CPU instructions, and it is tedious and error-prone to specify them one by
one. For that reason, high-level programming languages have been created. These
languages allow a programmer to specify the desired program actions at a high level.
The high-level instructions are then automatically translated into the more detailed
instructions required by the CPU.

When computers were first
invented in the 1940s, a
computer filled an entire

room. The photo below shows the
ENIAC (electronic numerical integrator
and computer), completed in 1946 at
the University of Pennsylvania. The
ENIAC was used by the military to com-
pute the trajectories of projectiles.
Nowadays, computing facilities of
search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that you
are reading right now could not have

been written without computers.
Knowing about computers and

how to program them has become
an essential skill in many careers.
Engineers design computer-controlled
cars and medical equipment that
preserve lives. Computer scientists
develop programs that help people
come together to support social
causes. For example, activists used
social networks to share videos
showing abuse by repressive regimes,
and this information was instrumental
in changing public opinion.

As computers, large and small,
become ever more embedded in our
everyday lives, it is increasingly impor-
tant for everyone to understand how
they work, and how to work with them.
As you use this book to learn how to
program a computer, you will develop
a good understanding of computing
fundamentals that will make you a
more informed citizen and, perhaps,
a computing professional.

© Stephen Coburn/123RF.com.

© Maurice Savage/Alamy Limited.
This transit card contains a computer.

© UPPA/Photoshot.

The ENIAC

©
 M

au
ri

ce
 S

av
ag

e/
A

la
m

y
L

im
it

ed
.

©
 U

P
PA

/P
ho

to
sh

ot
.

6 Chapter 1 Introduction

In this book, we will use a high-level programming
language called Python, which was developed in the
early 1990s by Guido van Rossum. Van Rossum
needed to carry out repetitive tasks for administering
computer systems. He was dissatisfied with other
available languages that were optimized for writing
large and fast programs. He needed to write smaller
programs that didn’t have to run at optimum speed. It
was important to him that he could author the pro-
grams quickly and update them quickly as his needs
changed. Therefore, he designed a language that made
it very easy to work with complex data. Python has
evolved considerably since its beginnings. In this
book, we use version 3 of the Python language. Van
Rossum is still the principal author of the language,
but the effort now includes many volunteers.

Python has become popular for business, scientific, and academic applications and
is very suitable for the beginning programmer. There are many reasons for the suc-
cess of Python. Python has a much simpler and cleaner syntax than other popular
languages such as Java, C, and C++, which makes it easier to learn. Moreover, you
can try out short Python programs in an interactive environment, which encourages
experimentation and rapid turnaround. Python is also very portable between com-
puter systems. The same Python program will run, without change, on Windows,
UNIX, Linux, and Macintosh.

6. Why don’t you specify a program directly in CPU instructions?
7. What are the two most important benefits of the Python language?

Practice It Now you can try this exercise at the end of the chapter: R1.5.

1.4 Becoming Familiar with Your Programming
Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you
a tour.

Step 1 Install the Python development environment.

Your instructor may have given you installation instructions for the environment
that is used in your course. If not, follow the installation instructions that we provide
at http://horstmann.com/python4everyone/install.html.

© Sauria Associates, LLC/FlickrVision/Getty Images, Inc.

Python is portable
and easy to learn
and use.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Set aside some
time to become
familiar with the
programming
environment that
you will use for your
class work.

Sa
ur

ia
 A

ss
oc

ia
te

s,
L

L
C

/F
lic

kr
V

is
io

n/
G

et
ty

 I
m

ag
es

, I
nc

.

1.4 Becoming Familiar with Your Programming Environment 7

Step 2 Start the Python development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch a text editor, a program that functions like a
word processor, in which you can enter your Python instructions; you then open a
terminal window and type commands to execute your program. Follow the instruc-
tions from your instructor or those at http://horstmann.com/python4everyone/install.html.

Step 3 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Python:

My first Python program.
print("Hello, World!")

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program instructions into an editor window.
Create a new file and call it hello.py, using the steps that are appropriate for your

environ ment. (If your environment requires that you supply a project name in addi-
tion to the file name, use the name hello for the project.) Enter the program instruc-
tions exactly as they are given above. Alternatively, locate the electronic copy in this
book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and keep
in mind that Python is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type Print or PRINT. If you
are not careful, you will run into problems—see Common Error 1.1 on page 15.

Step 4 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).
A Python program is executed using the Python interpreter. The interpreter

reads your program and executes all of its steps. (Special Topic 1.1 on page 10
explains in more detail what the Python interpreter does.) In some programming
environments, the Python interpreter is automatically launched when you click on a
“Run” button or select the “Run” option from a menu. In other environments, you
have to launch the interpreter explicitly.

A text editor is a
program for entering
and modifying text,
such as a Python
program.

Python is case
sensitive. You must
be careful about
distinguishing
between upper- and
lowercase letters.

The Python
interpreter reads
Python programs
and executes
the program
instructions.

Figure 4 Running the hello.py Program in a Terminal Window

8 Chapter 1 Introduction

Step 5

Figure 5
Running the
hello.py Program
in an Integrated
Development
Environment

Organize your work.

As a programmer, you write programs, try them out, and improve them. If you want
to keep your programs, or turn them in for grading, you store them in files. A Python
program can be stored in a file with any name, provided it ends with .py. For example,
we can store our first program in a file named hello.py or welcome.py.

Files are stored in folders or directories. A folder can contain files as well as other
folders, which themselves can contain more files and folders (see Figure 6). This hier-
archy can be quite large, and you need not be concerned with all of its branches.
However, you should create folders for organizing your
work. It is a good idea to make a separate folder for your pro-
gramming class. Inside that folder, make a separate folder for
each program.

Some programming environments place your programs
into a default location if you don’t specify a folder. In that
case, you need to find out where those files are located.

Be sure that you understand where your files are located in
the folder hierarchy. This information is essential when you
submit files for grading, and for making backup copies (see
Programming Tip 1.2 on page 9).

8. Where is the hello.py file stored on your computer?
9. What do you do to protect yourself from data loss when you work on program-

ming projects?

Practice It Now you can try this exercise at the end of the chapter: R1.6.

Figure 6
A Folder Hierarchy

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

1.4 Becoming Familiar with Your Programming Environment 9

Interactive Mode

When you write a complete program, you place the program instructions in a file and let the
Python interpreter execute your program file. The interpreter, however, also provides an
interactive mode in which Python instructions can be entered one at a time. To launch the
Python interactive mode from a terminal window, enter the command

python

(On systems where multiple versions of Python are installed, use the command python3 to run
version 3 of Python.) Interactive mode can also be started from within most Python integrated
development environments.

The interface for working in interactive mode is known as the Python shell. First, you will
see an informational message similar to the following:

Python 3.1.4 (default, Nov 3 2014, 14:38:10)
[GCC 4.9.1 20140930 (Red Hat 4.9.1-11)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> at the bottom of the output is the prompt. It indicates that you can enter Python
instructions. (Your prompt may look different, such as In [1]:.) After you type an instruc-
tion and press the Enter key, the code is immediately executed by the Python interpreter. For
example, if you enter

print("Hello, World!")

the interpreter will respond by executing the print function and displaying the output, fol-
lowed by another prompt:

>>> print("Hello, World!")
Hello World
>>>

Interactive mode is very useful when you are first learning to program. It allows you to experi-
ment and test individual Python instructions to see what happens. You can also use interactive
mode as a simple calculator. Just enter mathematical expressions using Python syntax:

>>> 7035 * 0.15
1055.25
>>>

Make it a habit to use interactive mode as you experiment with new language constructs.

Backup Copies

You will spend many hours creating and improving Python pro-
grams. It is easy to delete a file by accident, and occasionally files
are lost because of a computer malfunction. Retyping the contents
of lost files is frustrating and time-consuming. It is therefore cru-
cially impor tant that you learn how to safeguard files and get in
the habit of doing so before disaster strikes. Backing up files on a
memory stick is an easy and convenient storage method for many
people. Another increasingly popular form of backup is Internet
file storage. Here are a few pointers to keep in mind:
• Back up often. Backing up a file takes only a few seconds, and you will hate yourself if

you have to spend many hours recreating work that you could have saved easily. We
rec ommend that you back up your work once every thirty minutes.

• Rotate backups. Use more than one directory for backups, and rotate them. That is, first
back up onto the first directory. Then back up onto the second directory. Then use the

Programming Tip 1.1

© Mikhail Mishchenko/123RF Limited.

Programming Tip 1.2

© Mikhail Mishchenko/123RF Limited.

© Tatiana Popova/iStockphoto.

Develop a strategy
for keeping backup
copies of your work
before disaster
strikes.

©
 T

at
ia

na
 P

op
ov

a/
iS

to
ck

ph
ot

o.

