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Executed while 
condition is true

Condition

A container (list, str, range, dict, set)

Loop Statements

while balance < TARGET :
   year = year + 1
   balance = balance * (1 + rate / 100)

for value in values :
   sum = sum + value

Selected Operators and Their Precedence
(See Appendix A for the complete list.)

[]               Sequence element access
**               Raising to a power
* / // %         Multiplication, division, �oor 

division, remainder
+ -              Addition, subtraction
< <= > >= != in  Comparisons and membership
not    

or               Boolean operators
and     

Variable and Constant De�nitions

cansPerPack = 6

CAN_VOLUME = 0.335

Name      Initial value

Exits method and 
returns result

Function name   Parameter name

Function De�nition

def cubeVolume(sideLength) :
volume = sideLength ** 3

   return volume

Mathematical Functions

abs(x)                 Absolute value   |x|
round(x)               Rounds to nearest integer
max(x1, x2, ...)       Largest of the arguments
min(x1, x2, ...)       Smallest of the arguments

From math module:
sqrt(x)                Square root    x
trunc(x)               Truncates to an integer
sin(x), cos(x), tan(x)   Sine, cosine, tangent of x
degrees(x), radians(x) Converts to degrees or radians
log(x), log(x, base)    Natural log, logbase(x)

Conditional Statement

if floor >= 13 :
   actualFloor = floor - 1
elif floor >= 0 :
   actualFloor = floor
else :
   print("Floor negative")

Condition
Executed when condition is true

Second condition (optional)

Executed when 
all conditions are 
false (optional)

Use uppercase for constants

Tables

table = [[16, 3, 2, 13],
   [5, 10, 11, 8],
   [9, 6, 7, 12],
   [4, 15, 14, 1]]

for row in range(len(table)) :
   for column in range(len(table[row])) :
      sum = sum + table[row][column]

Number of rows
Number of columns

Imports

from math import sqrt, log

    Module      Imported items

Strings

s = "Hello"

len(s)

s[1]  

s + "!"  

s * 2   

s.upper()  

s.replace("e", "3")   

The length of the string: 5
The character with index 1: "e"
Concatenation: Hello!
Replication: "HelloHello"
Yields "HELLO"
Yields "H3llo"

Lists

friends = []  
values = [16, 3, 2, 13]

for i in range(len(values)) :
   values[i] = i * i

friends.append("Bob") 
friends.insert(0, "Amy")
if "Amy" in friends :
   n = friends.index("Amy")
   friends.pop(n)   
else :
   friends.pop()   
friends.remove("Bob")

guests = friends + ["Lee", "Zoe"]
scores = [0] * 12   
bestFriends = friends[0 : 3]

total = sum(values)   
largest = max(values)   
values.sort()   

 An empty list

              
     Removes nth
     Removes last

                                    Concatenation
          Replication 
                  Slice 

         

              List must contain numbers
              

Use min to get the smallest

Included Excluded
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PREFACE

iii

This book is an introduction to computer programming using Python that focuses on 
the essentials—and on effective learning. Designed to serve a wide range of student 
interests and abilities, it is suitable for a first course in programming for computer 
scientists, engineers, and students in other disciplines. No prior programming expe-
rience is required, and only a modest amount of high school algebra is needed. For 
pedagogical reasons, the book uses Python 3, which is more regular than Python 2. 

Here are the book’s key features:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, functions, proce-
dural decomposition, and the built-in data structures. Objects are used when appro-
priate in the early chapters. Students start designing and implementing their own 
classes in Chapter 9.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course, 
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence 
and providing an outline for the task at hand. “Problem Solving” sections stress the 
importance of design and planning. “How To” guides help students with common 
programming tasks. Numerous Worked Examples demonstrate how to apply chap-
ter concepts to interesting problems.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate 
solutions to programming problems. Introduced where they are most relevant, these 
strategies address barriers to success for many students. Strategies included are:

• Algorithm Design (with pseudocode)
• First Do It By Hand (doing sample 

calculations by hand)
• Flowcharts
• Test Cases
• Hand-Tracing
• Storyboards
• Solve a Simpler Problem First
• Reusable Functions

• Stepwise Refnement
• Adapting Algorithms 
• Discovering Algorithms by  

Manipulating Physical Objects
• Tracing Objects
• Patterns for Object Data
• Thinking Recursively
• Estimating the Running Time of  

an Algorithm

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs, 
but they first need to have the confidence that they can succeed. This book contains 
a substantial number of self-check questions at the end of each section. “Practice It” 
pointers suggest exercises to try after each section. And additional practice oppor-
tunities, including automatically-graded programming exercises and skill-oriented 
multiple-choice questions, are available online.
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A visual approach motivates the reader and eases navigation. 
Photographs present visual analogies that explain the 
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations. 
Syntax boxes and example tables present a variety 
of typical and special cases in a compact format. It 
is easy to get the “lay of the land” by browsing the 
visuals, before focusing on the textual material.

Focus on the essentials while being 
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials 
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.

New to This Edition
Extended Graphics and Image Processing
The use of graphics to reinforce language constructs has been extended to include the 
use of image processing. Students are introduced to image processing in Chapter 4 as 
they learn to design and use loops and again in Chapter 5 where they build a toolkit of 
image processing functions.

Toolbox Sections
Many optional “Toolbox” sections introduce useful packages in the wonderful eco-
system of Python libraries. Students are empowered to perform useful work such 
as statistical computations, drawing graphs and charts, sending e-mail, processing 
spreadsheets, and analyzing web pages. The libraries are placed in the context of 
computer science principles, and students learn how those principles apply to solving 
real-world problems. Each Toolbox is accompanied by many new end-of-chapter 
review and programming exercises.

Data Plotting
Several new Worked Examples show students how to create a visual representation 
of data through graphical plots. These examples use the pyplot library to create simple 
data plots as they show students how to apply the language constructs introduced in 
the respective chapters.

Interactive Learning
Additional interactive content is available that integrates with this text and immerses 
students in activities designed to foster in-depth learning. Students don’t just watch 
animations and code traces, they work on generating them. The activities provide 
instant feedback to show students what they did right and where they need to study 
more. To find out more about how to make this content available in your course, visit 
http://wiley.com/go/pfe2interactivities.

© Terraxplorer/iStockphoto.

Visual features help the reader 
with navigation.
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Preface v

“CodeCheck” is an innovative online service that students can use to work on pro-
gramming problems. You can assign exercises that have already been prepared, and 
you can easily add your own. Visit http://codecheck.it to learn more and to try it out.

A Tour of the Book
Figure 1 shows the dependencies between the chapters and how topics are organized. 
The core material of the book is:

Chapter 1. Introduction
Chapter 2. Programming with 

Numbers and Strings
Chapter 3. Decisions
Chapter 4. Loops

Chapter 5. Functions
Chapter 6. Lists
Chapter 7. Files and Exceptions
Chapter 8. Sets and Dictionaries

Two chapters cover object-oriented programming:

Chapter 9. Objects and Classes
Chapter 10. Inheritance

Two chapters support a course that goes more deeply into algorithm design and 
analysis:

Chapter 11. Recursion
Chapter 12. Sorting and Searching

Figure 1  
Chapter Dependencies

10. Inheritance

11. Recursion

12. Sorting 
and Searching

9. Objects 
and Classes

Fundamentals

Object-Oriented Programming

Data Structures & Algorithms

1. Introduction

2. Programming 
with Numbers 

and Strings

3. Decisions

4. Loops

5. Functions

7. Files and 
Exceptions

A gentle 
introduction to recursion 

is optional.

Sections 7.1 and 7.2
(text �le processing) can be 

covered with Chapter 4. 6. Iteration6. Lists

6. Iteration
8. Sets and 
Dictionaries

Sections 6.1 – 6.3
(lists) can be covered

 with Chapter 4.
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Appendices Six appendices provide a handy reference for students on operator 
precedence, reserved words, Unicode, the Python standard library, and more.

Graphics and Image Processing
Writing programs that create drawings or process images can provide students with 
effective visualizations of complex topics. Chapter 2 introduces the EzGraphics 
open-source library and how to use it to create basic graphical drawings. The library, 
which students find easier to use than Python’s standard Tkinter library, also sup-
ports simple image processing. Graphics Worked Examples and exercises are pro-
vided throughout the text, all of which are optional.  

Exercises
End-of-chapter exercises contain a broad mix of review and programming questions, 
with optional questions from graphics, science, and business. Designed to engage 
students, the exercises illustrate the value of programming in applied fields.

Custom Book and eBook Options
Python For Everyone may be ordered in both custom print and eBook formats. You 
can order a custom print version that includes your choice of chapters—including 
those from other Horstmann titles. Visit customselect.wiley.com to create your custom 
order. 

Python For Everyone is also available in an electronic eBook format with three key 
advantages:

• The price is signifcantly lower than for the printed book.
• The eBook contains all material in the printed book plus the web appendices in 

one easy-to-browse format.
• You can customize the eBook to include your choice of chapters.

The interactive edition of Python For Everyone adds even more value by integrating 
a wealth of interactive exercises into the eBook. See http://wiley.com/go/pfe2interac-
tivities to find out more about this new format.

Please contact your Wiley sales rep for more information about any of these 
options or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

• Source code for all examples programs and Worked Examples in the book.
• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This 

extensive set of multiple-choice questions can be used with a word processor or 
imported into a course management system.

• “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback. 
Instructors can assign exercises that have already been prepared, or easily add 
their own.



Preface vii

Acknowledgments
Many thanks to Byran Gambrel, Don Fowley, Jessy Moor, Jennifer Lartz, Graig 
Donini, and Billy Ray at John Wiley & Sons, and Vickie Piercey at Publishing Ser-
vices for their help with this project. An especially deep acknowledgment and thanks 
goes to Cindy Johnson for her hard work, sound judgment, and amazing attention to 
detail.

We are grateful to the following for their excellent work preparing and reviewing 
the supplemental materials:

Jim Carrier, Guilford Technical Community College
Akshaye Dhawan, Ursinus College
Byron Hoy, Stockton University
Maria Laurent-Rice, Orange Coast College
John McManus, Randolph-Macon College
Ben Stephenson, University of Calgary
Amanda Stouder, Rose-Hulman Institute of Technology
Dean Zeller, University of Northern Colorado

Many thanks to the individuals who provided feedback, reviewed the manuscript, 
made valuable suggestions, and brought errors and omissions to our attention. They 
include:

Claude Anderson, Rose Hulman Institute of Technology
Gokcen Cilingir, Washington State University
Lee D. Cornell, Minnesota State University, Mankato
Dirk Grunwald, University of Colorado Boulder
Andrew Harrington, Loyola University Chicago
Debbie Keen, University of Kentucky
Nicholas A. Kraft, University of Alabama
Aaron Langille, Laurentian University
Shyamal Mitra, University of Texas Austin
Chandan R. Rupakheti, Rose-Hulman Institute of Technology
John Schneider, Washington State University
Amit Singhal, University of Rochester
Ben Stephenson, University of Calgary
Amanda Stouder, Rose-Hulman Institute of Technology
Dave Sullivan, Boston University
Jay Summet, Georgia Institute of Technology
James Tam, University of Calgary
Krishnaprasad Thirunarayan, Wright State University
Leon Tietz, Minnesota State University, Mankato
Peter Tucker, Whitworth University
Frances VanScoy, West Virginia University
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A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key 
concepts and fundamental principles of programming, with additional tips and detail 
organized to support and deepen these fundamentals. In addition to traditional fea-
tures, such as chapter objectives and a wealth of exercises, each chapter contains ele-
ments geared to today’s visual learner.

1.5 Analyzing Your First Program  11

1.5 Analyzing Your First Program
  eht si niaga ereH .liated ni margorp nohtyP tsrfi eht ezylana lliw ew ,noitces siht nI

code:

ch01/hello.py

1 # My �rst Python program.
2 print("Hello, World!")

A Python program contains one or more lines of instructions or statements that will 
be translated and executed by the Python interpreter. The first line

# My first Python program.

is a comment. Comments begin with # and are not statements. They provide descrip-
tive information to the programmer. Comments will be discussed in more detail in 
Section 2.1.5. 

The second line contains a statement
print("Hello, World!")

that prints or displays a line of text, namely “Hello, World!”. In this statement, we 
call a function named print and pass it the information to be displayed. A function is 
a collection of programming instructions that carry out a particular task. We do not 
have to implement this function, it is part of the Python language. We simply want 
the function to perform its intended task, namely to print a value.

To use, or call, a function in Python, you need to specify

1. The name of the function you want to use (in this case, print).
2. Any values the function needs to carry out its task (in this case, "Hello, World!"). 

The technical term for such a value is an argument. Arguments are enclosed in 
parentheses with multiple arguments separated by commas. The number of 
arguments required depends on the function. 

A comment provides 
information to  
the programmer.

A function is 
a collection of 
instructions 
that perform a 
particular task.

A function is called 
by specifying the 
function name and  
its arguments.

Syntax 1.1 print Statement

print("The answer is", 6 + 7, "!")

All arguments are optional. If no arguments
are given, a blank line is printed.

The v alues to be printed, 
one after the other , 
separated by a blank space.

print()
print(value1, value2, ..., valuen)  

Syntax

Throughout each chapter, 
margin notes show where 
new concepts are introduced 
and provide an outline of key ideas. 

Annotated syntax boxes 
provide a quick, visual overview 
of new language constructs.

Like a variable in a computer 
program, a parking space has 
an identifier and a contents. 

Analogies to everyday objects are 
used to explain the nature and behavior 
of concepts such as variables, data 
types, loops, and more.

Annotations explain required 
components and point to more 
information on common errors 
or best practices associated 
with the syntax.
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6.6 Problem Solving: Discovering Algorithms by Manipulating Physical Objects  311

Now how does that help us with our problem, switching the first and the second 
half of the list?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
Python programmers, we will say that we swap the coins in positions 0 and 4:  

  

  

 
 
 

Problem Solving sections teach 
techniques for generating ideas and 
evaluating proposed solutions, often
using pencil and paper or other 
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

   

  

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1  and fuel ef�ciency1 , the price and fuel efficiency (in mpg) of the first car
• purchase price2  and fuel ef�ciency2 , the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Python, you need to develop an algorithm—a 
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code: a sequence of precise steps formulated in English. 

Problem Statement You have the choice of buying two 
cars. One is more fuel efficient than the other, but also more 
expensive. You know the price and fuel efficiency (in miles per 
gallon, mpg) of both cars. You plan to keep the car for ten years. 
Assume a price of $4 per gallon of gas and usage of 15,000 miles 
per year. You will pay cash for the car and not worry about 
financing costs. Which car is the better deal? 

Step 1 Determine the inputs and outputs.

The inputs are the floor dimensions (length × width), 
measured in inches. The output is a tiled floor. 

Step 2 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can 
solve that task, then you can solve the problem by lay ing 
one row next to the other, starting from a wall, until you 
reach the opposite wall. 

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

Problem Statement Make a plan for tiling a rectangular bathroom floor with alternating 
black and white tiles measuring 4 × 4 inches. The floor dimensions, measured in inches, are 
multiples of 4.

How To guides give step-by-step 
guidance for common programming 
tasks, emphasizing planning and 
testing. They answer the beginner’s 
question, “Now what do I do?” and 
integrate key concepts into a 
problem-solving sequence.

Table 1  Number Literals in Python

Number Type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 float A number with a fractional part has type float.

1.0 float An integer with a fractional part .0 has type float.

1E6 float A number in exponential notation: 1 × 106 or 1000000. 
Numbers in exponential notation always have type float.

2.96E-2 float Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 Error: Do not use a comma as a decimal separator. 

3 1/2 Error: Do not use fractions; use decimal notation: 3.5.

Example tables support beginners 
with multiple, concrete examples. 
These tables point out common 
errors and present another quick 
reference to the section’s topic.

Worked Examples apply 
the steps in the How To to a 
di�erent example, showing 
how they can be used to 
plan, implement, and test 
a solution to another 
programming problem.

Memorable photos reinforce 
analogies and help students 
remember the concepts.

A recipe for a fruit pie may say to use any kind of fruit.  
Here, “fruit” is an example of a parameter variable.  
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

Optional graphics programming 
examples demonstrate constructs 
with engaging drawings, visually 
reinforcing programming concepts.
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Figure 3  
Parameter P

1 Function call result1 =

sideLength =

2 Initializing function parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After function call result1 = 8

result1 = cubeVolume(2)

volume = sideLength ** 3
return volume

result1 = cubeVolume(2)

result1 = cubeVolume(2)

Consider the function call illustrated in Figure 3:
result1 = cubeVolume(2) 

• The parameter variable sideLength of the cubeVolume function is created when the 
function is called.  1

• The parameter variable is initialized with the value of the argument that was 
passed in the call. In our case, sideLength is set to 2.  2  

• The function computes the expression sideLength ** 3, which has the value 8. That 
value is stored in the variable volume.  3

• The function returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the function calling the cubeVolume function. The caller 
puts the return value in the result1 variable.  4    

ch04/doubleinv.py

1 ##
2 #  This program computes the time required to double an investment.
3 #
4 
5 # Create constant variables.
6 RATE = 5.0
7 INITIAL_BALANCE = 10000.0
8 TARGET = 2 * INITIAL_BALANCE
9       

10 # Initialize variables used with the loop.
11 balance = INITIAL_BALANCE
12 year = 0
13 
14 # Count the years required for the investment to double.
15 while balance < TARGET :
16    year = year + 1
17    interest = balance * RATE / 100
18    balance = balance + interest
19    
20 # Print the results.   
21 print("The investment doubled after", year, "years.")

25. Write the for loop of the investment.py program as a while loop.
26. How many numbers does this loop print?

for n in range(10, -1, -1) :
   print(n)

27. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
28. Write a for loop that computes the total of the integers from 1 to n.
29. How would you modify the loop of the investment.py program to print all bal-

ances until the investment has doubled? 

Practice It Now you can try these exercises at the end of the chapter: R4.18, R4.19, P4.8.

S E L F  C H E C K
Self-check exercises at the 
end of each section are designed 
to make students think through 
the new material—and can  
spark discussion in lecture.

•• Business P4.28 Currency conversion. Write a program 
that first asks the user to type today’s 
price for one dollar in Japanese yen, 
then reads U.S. dollar values and 
converts each to yen. Use 0 as a sentinel.

•• Business P4.29 Write a program that first asks the user 
to type in today’s price of one dollar 
in Jap anese yen, then reads U.S. dollar 

l d h

 

•• Graphics P2.30 Write a program that displays the Olympic rings. Color the rings in the Olympic 
colors.

 Make a bar chart to plot the following data set. Label each bar.   

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

• Science P4.37 Radioactive decay of radioactive materials can be 
modeled by the equation A = A0e-t (log 2 /h), where A is 
the amount of the material at time t, A0 is the amount 
at time 0, and h is the half-life. 
Technetium-99 is a radioisotope that is used in imaging 
of the brain. It has a half-life of 6 hours. Your program 
should display the relative amount A /A0 in a patient 
body every hour for 24 hours after receiving a dose.

Program listings are carefully 
designed for easy reading, going 
well beyond simple color coding. 
Methods and functions are set 
o� by a subtle outline. 

Optional science, graphics, and 
business exercises engage 
students with realistic applications.

Figure 2  
Execution of the  
doubleinv.py Loop

while balance < TARGET :
   year = year + 1
   interest = balance * RATE / 100
   balance = balance + interest

print(year)

while balance < TARGET :
   year = year + 1
   interest = balance * RATE / 100
   balance = balance + interest

Check the loop condition1
The condition is true

while balance < TARGET :
   year = year + 1
   interest = balance * RATE / 100
   balance = balance + interest

Execute the statements in the loop2

while balance < TARGET :
   year = year + 1
   interest = balance * RATE / 100
   balance = balance + interest

Check the loop condition again3
The condition is still true

while balance < TARGET :
   year = year + 1
   interest = balance * RATE / 100
   balance = balance + interest

After 15 iterations4
The condition is 

no longer true

Execute the statement following the loop5

.

.

.

year = 0

balance = 10000.0

year = 1

interest = 500.0

interest = 500.0

interest = 989.97

interest = 989.97

balance = 10500.0

year = 1

balance = 10500.0

year = 15

balance = 20789.28

year = 15

balance = 20789.28

Progressive �gures trace code 
segments to help students visualize 
the program �ow. Color is used 
consistently to make variables and 
other elements easily recognizable.
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TOOLBOX 7.1 Working with CSV Files 

You have seen how to read and write text �les and to process data stored in various formats, 
but what if you need to process data stored in a spreadsheet? For example, suppose you need 
to print a list of all the movies released in the 1990s from a spreadsheet �lled with movie data, 
such as the one shown below.

Most spreadsheet applications store their data in proprietary �le formats that cannot be 
accessed directly by other programs. Fortunately, most can save a copy of the data in a porta

 (Comma-Separated Values). A CSV �le is simply a text �le in which 
each row of the spreadsheet is stored as a line of text. The data values in each row are separated 
by commas. For example, the CSV �le created from the spreadsheet shown above contains:

ble format known as CSV
-

Exact Comparison of Floating-Point Numbers

Floating-point numbers have only a limited precision, and cal-
culations can introduce round off errors. You must take these 
inevitable roundoffs into account when comparing floating-
point numbers. For example, the following code multiplies the 
square root of 2 by itself. Ide ally, we expect to get the answer  2:

from math import sqrt
 
r = sqrt(2.0)
if r * r == 2.0 :
   print("sqrt(2.0) squared is 2.0")
else :
   print("sqrt(2.0) squared is not 2.0 but", r * r)

This program displays

sqrt(2.0) squared is not 2.0 but 2.0000000000000004

It does not make sense in most circumstances to compare float ing-point numbers exactly. 
Instead, we should test whether they are close enough. That is, the magnitude of their differ-
ence should be less than some threshold. Mathematically, we would write that x and y are close 
enough if

Common Error 3.2 

Take limited precision into 
account when comparing 
floating-point numbers.

Common Errors describe the kinds 
of errors that students often make, 
with an explanation of why the errors 
occur, and what to do about them. 

Hand-Tracing

A very useful technique for understanding whether a pro gram 
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with 
pseudocode or Python code.

Get an index card, a cocktail napkin, or whatever sheet of paper 
is within reach. Make a column for each variable. Have the pro-
gram code ready. Use a marker, such as a paper clip, to mark the 
current statement. In your mind, execute statements one at a time. 
Every time the value of a variable changes, cross out the old value 
and write the new value below the old one. 

Let’s trace the taxes.py program on page 107 with the inputs from 
the program run that follows it. In lines 12 and 13, income and 
maritalStatus are initialized by input statements.

5 # Initialize constant variables for the tax rates and rate limits.
6 RATE1 = 0.10
7 RATE2 = 0.25
8 RATE1_SINGLE_LIMIT = 32000.0
9 RATE1_MARRIED_LIMIT = 64000.0

10 
11 # Read income and marital status.
12 income = float(input("Please enter your income: "))
13 maritalStatus = input("Please enter s for single, m for married: ")

In lines 16 and 17, tax1 and tax2 are 
initialized to 0.0.

tax1 = 0.0
tax2 = 0.0

Programming Tip 3.2 

Hand-tracing helps you  
understand whether a  
program works correctly.

    marital
 tax1 tax2 income status

     80000 m

    

    marital
 tax1 tax2 income status

 0 0 80000 m 

    When computers were first 
invented in the 1940s, a 
computer filled an entire 

room. The photo below shows the 
ENIAC (electronic numerical integra-
tor and computer), completed in 1946 
at the University of Pennsylvania. 
The ENIAC was used by the military 
to compute the trajectories of projec-
tiles. Nowadays, computing facilities 
of search engines, Internet shops, and 
social networks fill huge buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us. Your cell phone has a computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio. 

This transit card contains a computer.

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people 
who know how to work 
with those computers. 
Books, music, and mov-
ies nowadays are often 
consumed on comput-
ers, and computers are 
almost always involved 
in their production. The book that 
you are reading right now could 

not have been written without 
computers.

Computing & Society 1.1 Computers Are Everywhere

Short-Circuit Evaluation of Boolean Operators

The and and or operators are computed using short-circuit evalu-
ation. In other words, logical expressions are evaluated from left to 
right, and evaluation stops as soon as the truth value is determined. 
When an and is evaluated and the first condition is false, the second 
condition is not evaluated, because it does not matter what the out-
come of the second test is. 

For example, consider the expression

quantity > 0 and price / quantity < 10

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not 
attempted. That is just as well, because it is illegal to divide by zero. 

Similarly, when the first condition of an or expres-
sion is true, then the remainder is not evaluated because 
the result must be true. 

In a short circuit, electricity travels along the path of 
least resistance. Similarly, short-circuit evaluation  

takes the fastest path for computing the result  
of a Boolean expression.

Special Topic 3.4 

The and and or 
operators are 
computed using 
short-circuit 
evaluation: As soon 
as the truth value 
is determined, no 
further conditions 
are evaluated.

Programming Tips explain 
good programming practices, 
and encourage students to be 
more productive with tips and 
techniques such as hand-tracing.

Computing & Society presents social 
and historical information on computing—
for interest and to ful�ll the “historical 
and social context” requirements of the 
ACM/IEEE curriculum guidelines.

Special Topics present optional 
topics and provide additional 
explanation of others. 

Toolbox sections teach students 
how to use Python libraries for 
solving real-world problems. 
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2

Just as you gather tools, study a project, and make a plan for 
tackling it, in this chapter you will gather up the basics you 
need to start learning to program. After a brief introduction 
to computer hardware, software, and programming in 
general, you will learn how to write and run your first 
Python program. You will also learn how to diagnose and 
fix programming errors, and how to use pseudocode to 
describe an algorithm—a step-by-step description of how 
to solve a problem—as you plan your computer programs.

1.1 Computer Programs
You have probably used a computer for work or fun. Many people use computers 
for everyday tasks such as electronic banking or writing a term paper. Computers are 
good for such tasks. They can handle repetitive chores, such as totaling up numbers 
or placing words on a page, without getting bored or exhausted. 

The flexibility of a computer is quite an amazing phenomenon. The same machine 
can balance your checkbook, lay out your term paper, and play a game. In contrast, 
other machines carry out a much nar rower range of tasks; a car drives and a toaster 
toasts. Computers can carry out a wide range of tasks because they execute different 
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs. 
A computer program tells a computer, in minute detail, the sequence of steps that are 
needed to fulfill a task. The physical computer and periph eral devices are collectively 
called the hardware. The programs the computer executes are called the soft ware. 

Today’s computer programs are so sophisticated that it is hard to believe that they 
are composed of extremely primitive instructions. A typical instruction may be one 
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains 
a huge number of such instructions, and because the computer can execute them at 
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct 
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor 
that supports fancy fonts and pictures is a complex task that requires a team of many 
highly-skilled programmers. Your first programming efforts will be more mundane. 
The concepts and skills you learn in this book form an important foundation, and 
you should not be disappointed if your first programs do not rival the sophis ticated 
software that is familiar to you. Actually, you will find that there is an immense thrill 
even in sim ple programming tasks. It is an amazing experience to see the computer 
precisely and quickly carry out a task that would take you hours of drudgery, to 

Computers 
execute very basic 
instructions in rapid 
succession. 

A computer program 
is a sequence of 
instructions and 
decisions.

Programming is the 
act of designing 
and implementing 
computer programs.

© JanPietruszka/iStockphoto.
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make small changes in a program that lead to immediate improvements, and to see the 
computer become an extension of your mental powers.

1. What is required to play music on a computer? 
2. Why is a CD player less flexible than a computer? 
3. What does a computer user need to know about programming in order to play a 

video game?

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal 
computer. Larger computers have faster, larger, or more powerful components, but 
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 1). 
The inside wiring of the CPU is enormously complicated. The CPUs used for per-
sonal computers at the time of this writing are composed of several hundred million 
structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates 
and executes the program instructions; it carries out arithmetic operations such as 
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage. 

There are two kinds of storage. Primary storage is made from memory chips: 
electronic circuits that can store data, provided they are supplied with electric power. 
Secondary storage, usually a hard disk (see Figure 2), provides slower and less 
expensive storage that persists without electricity. A hard disk consists of rotating 
platters, which are coated with a mag netic material, and read/write heads, which can 
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the 
data in memory and writes the modified data back to secondary storage.

© Nicholas Homrich/iStockphoto.
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The central 
processing unit (CPU) 
performs program 
control and data 
processing.

Storage devices 
include memory and 
secondary storage.

Figure 1 Central Processing Unit© Amorphis/iStockphoto. Figure 2 A Hard Disk
PhotoDisc, Inc./Getty Images, Inc.
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Figure 3 Schematic Design of a Personal Computer
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To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen, 
speakers, and printers. The user can enter information (called input) for the computer 
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected 
through networks. Through the network cabling, the computer can read data and 
programs from central storage locations or send data to other computers. To the user 
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network. 

Figure 3 gives a schematic overview of the architecture of a personal computer. 
Program instructions and data (such as text, numbers, audio, or video) are stored on 
the hard disk, on a compact disk (or DVD), or elsewhere on the network. When a 
program is started, it is brought into memory, where the CPU can read it. The CPU 
reads the program one instruction at a time. As directed by these instructions, the 
CPU reads data, modifies it, and writes it back to memory or the hard disk. Some pro-
gram instruc tions will cause the CPU to place dots on the display screen or printer or 
to vibrate the speaker. As these actions happen many times over and at great speed, 
the human user will perceive images and sound. Some program instructions read user 
input from the keyboard or mouse. The program analyzes the nature of these inputs 
and then executes the next appropriate instruction.

4. Where is a program stored when it is not currently running?
5. Which part of the computer carries out arithmetic operations, such as addition 

and multiplication?

Practice It Now you can try these exercises at the end of the chapter: R1.2, R1.3.© Nicholas Homrich/iStockphoto.
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Computing & Society 1.1 Computers Are Everywhere

1.3 The Python Programming Language
In order to write a computer program, you need to provide a sequence of instruc-
tions that the CPU can execute. A computer program consists of a large number of 
simple CPU instructions, and it is tedious and error-prone to specify them one by 
one. For that reason, high-level programming languages have been created. These 
languages allow a programmer to specify the desired program actions at a high level. 
The high-level instructions are then automatically translated into the more detailed 
instructions required by the CPU. 

When computers were first 
invented in the 1940s, a 
computer filled an entire 

room. The photo below shows the 
ENIAC (electronic numerical integrator 
and computer), completed in 1946 at 
the University of Pennsylvania. The 
ENIAC was used by the military to com-
pute the trajectories of projectiles. 
Nowadays, computing facilities of 
search engines, Internet shops, and 
social networks fill huge buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us. Your cell phone has a computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio. 

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people 
who know how to work 
with those computers. 
Books, music, and mov-
ies nowadays are often 
consumed on comput-
ers, and computers are 
almost always involved 
in their production. The book that you 
are reading right now could not have 

been written without computers.
Knowing about computers and 

how to program them has become 
an essential skill in many careers. 
Engineers design computer-controlled 
cars and medical equipment that 
preserve lives. Computer scientists 
develop programs that help people 
come together to support social 
causes. For example, activists used 
social networks to share videos 
showing abuse by repressive regimes, 
and this information was instrumental 
in changing public opinion.

As computers, large and small, 
become ever more embedded in our 
everyday lives, it is increasingly impor-
tant for everyone to understand how 
they work, and how to work with them. 
As you use this book to learn how to 
program a computer, you will develop 
a good understanding of computing 
fundamentals that will make you a 
more informed citizen and, perhaps,  
a computing professional.

© Stephen Coburn/123RF.com.

© Maurice Savage/Alamy Limited.
This transit card contains a computer.
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In this book, we will use a high-level programming 
language called Python, which was developed in the 
early 1990s by Guido van Rossum. Van Rossum 
needed to carry out repetitive tasks for administering 
computer systems. He was dissatisfied with other 
available languages that were optimized for writing 
large and fast programs. He needed to write smaller 
programs that didn’t have to run at optimum speed. It 
was important to him that he could author the pro-
grams quickly and update them quickly as his needs 
changed. Therefore, he designed a language that made 
it very easy to work with complex data. Python has 
evolved considerably since its beginnings. In this 
book, we use version 3 of the Python language. Van 
Rossum is still the principal author of the language, 
but the effort now includes many volunteers.

Python has become popular for business, scientific, and academic applications and 
is very suitable for the beginning programmer. There are many reasons for the suc-
cess of Python. Python has a much simpler and cleaner syntax than other popular 
languages such as Java, C, and C++, which makes it easier to learn. Moreover, you 
can try out short Python programs in an interactive environment, which encourages 
experimentation and rapid turnaround. Python is also very portable between com-
puter systems. The same Python program will run, without change, on Windows, 
UNIX, Linux, and Macintosh.  

6. Why don’t you specify a program directly in CPU instructions? 
7. What are the two most important benefits of the Python language?

Practice It Now you can try this exercise at the end of the chapter: R1.5.

1.4 Becoming Familiar with Your Programming 
Environment

Many students find that the tools they need as programmers are very different from 
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary 
widely, this book can only give an outline of the steps you need to follow. It is a good 
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you 
a tour.

Step 1 Install the Python development environment.

Your instructor may have given you installation instructions for the environment 
that is used in your course. If not, follow the installation instructions that we provide 
at http://horstmann.com/python4everyone/install.html. 

© Sauria Associates, LLC/FlickrVision/Getty Images, Inc.

Python is portable 
and easy to learn 
and use.

© Nicholas Homrich/iStockphoto.
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Set aside some 
time to become 
familiar with the 
programming 
environment that 
you will use for your 
class work.

Sa
ur

ia
 A

ss
oc

ia
te

s, 
L

L
C

/F
lic

kr
V

is
io

n/
G

et
ty

 I
m

ag
es

, I
nc

.



1.4 Becoming Familiar with Your Programming Environment  7

Step 2 Start the Python development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs. 
On other computers you first launch a text editor, a program that functions like a 
word processor, in which you can enter your Python instructions; you then open a 
terminal window and type commands to execute your program. Follow the instruc-
tions from your instructor or those at http://horstmann.com/python4everyone/install.html.

Step 3 Write a simple program.

The traditional choice for the very first program in a new programming language is 
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Python:

# My first Python program.
print("Hello, World!")

We will examine this program in the next section. 
No matter which programming environment you use, you begin your activity by 

typing the program instructions into an editor window. 
Create a new file and call it hello.py, using the steps that are appropriate for your 

environ ment. (If your environment requires that you supply a project name in addi-
tion to the file name, use the name hello for the project.) Enter the program instruc-
tions exactly as they are given above. Alternatively, locate the electronic copy in this 
book’s companion code and paste it into your editor. 

As you write this program, pay careful attention to the various symbols, and keep 
in mind that Python is case sensitive. You must enter upper- and lowercase letters 
exactly as they appear in the program listing. You cannot type Print or PRINT. If you 
are not careful, you will run into problems—see Common Error 1.1 on page 15. 

Step 4 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the 
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).
A Python program is executed using the Python interpreter. The interpreter 

reads your program and executes all of its steps. (Special Topic 1.1 on page 10 
explains in more detail what the Python interpreter does.) In some programming 
environments, the Python interpreter is automatically launched when you click on a 
“Run” button or select the “Run” option from a menu. In other environments, you 
have to launch the interpreter explicitly.

A text editor is a 
program for entering 
and modifying text, 
such as a Python 
program.

Python is case 
sensitive. You must 
be careful about 
distinguishing 
between upper- and 
lowercase letters.

The Python 
interpreter reads 
Python programs 
and executes 
the program 
instructions.

Figure 4 Running the hello.py Program in a Terminal Window
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Step 5 

Figure 5  
Running the  
hello.py Program  
in an Integrated  
Development  
Environment

Organize your work.

As a programmer, you write programs, try them out, and improve them. If you want 
to keep your programs, or turn them in for grading, you store them in files. A Python 
program can be stored in a file with any name, provided it ends with .py. For example, 
we can store our first program in a file named hello.py or welcome.py.

Files are stored in folders or directories. A folder can contain files as well as other 
folders, which themselves can contain more files and folders (see Figure 6). This hier-
archy can be quite large, and you need not be concerned with all of its branches. 
However, you should create folders for organizing your 
work. It is a good idea to make a separate folder for your pro-
gramming class. Inside that folder, make a separate folder for 
each program. 

Some programming environments place your programs 
into a default location if you don’t specify a folder. In that 
case, you need to find out where those files are located. 

Be sure that you understand where your files are located in 
the folder hierarchy. This information is essential when you 
submit files for grading, and for making backup copies (see 
Programming Tip 1.2 on page 9).

8. Where is the hello.py file stored on your computer? 
9. What do you do to protect yourself from data loss when you work on program-

ming projects?

Practice It Now you can try this exercise at the end of the chapter: R1.6.

Figure 6  
A Folder Hierarchy

© Nicholas Homrich/iStockphoto.
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Interactive Mode

When you write a complete program, you place the program instructions in a file and let the 
Python interpreter execute your program file. The interpreter, however, also provides an 
interactive mode in which Python instructions can be entered one at a time. To launch the 
Python interactive mode from a terminal window, enter the command 

python 

(On systems where multiple versions of Python are installed, use the command python3 to run 
version 3 of Python.) Interactive mode can also be started from within most Python integrated 
development environments. 

The interface for working in interactive mode is known as the Python shell. First, you will 
see an informational message similar to the following:

Python 3.1.4 (default, Nov 3 2014, 14:38:10)
[GCC 4.9.1 20140930 (Red Hat 4.9.1-11)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> at the bottom of the output is the prompt. It indicates that you can enter Python 
instructions. (Your prompt may look different, such as In [1]:.) After you type an instruc-
tion and press the Enter key, the code is immediately executed by the Python interpreter. For 
example, if you enter

print("Hello, World!")

the interpreter will respond by executing the print function and displaying the output, fol-
lowed by another prompt:

>>> print("Hello, World!")
Hello World
>>>

Interactive mode is very useful when you are first learning to program. It allows you to experi-
ment and test individual Python instructions to see what happens. You can also use interactive 
mode as a simple calculator. Just enter mathematical expressions using Python syntax:

>>> 7035 * 0.15
1055.25
>>>

Make it a habit to use interactive mode as you experiment with new language constructs.

Backup Copies

You will spend many hours creating and improving Python pro-
grams. It is easy to delete a file by accident, and occasionally files 
are lost because of a computer malfunction. Retyping the contents 
of lost files is frustrating and time-consuming. It is therefore cru-
cially impor tant that you learn how to safeguard files and get in 
the habit of doing so before disaster strikes. Backing up files on a 
memory stick is an easy and convenient storage method for many 
people. Another increasingly popular form of backup is Internet 
file storage. Here are a few pointers to keep in mind:
• Back up often. Backing up a file takes only a few seconds, and you will hate yourself if 

you have to spend many hours recreating work that you could have saved easily. We 
rec ommend that you back up your work once every thirty minutes.

• Rotate backups. Use more than one directory for backups, and rotate them. That is, first 
back up onto the first directory. Then back up onto the second directory. Then use the 

Programming Tip 1.1 

© Mikhail Mishchenko/123RF Limited.

Programming Tip 1.2 

© Mikhail Mishchenko/123RF Limited.
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Develop a strategy 
for keeping backup 
copies of your work 
before disaster 
strikes.
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